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Abstract

Text-Independent Speaker Recognition
from a Large Linguistically Unconstrained

Time-Spaced Data Base

John D. Markel and Steven B. Davis

A very large data base consisting of over thirty-six hours of

unconstrained extemporaneous speech, from seventeen speakers, recorded over

a period of more than three months, has been analyzed to determine the

effectiveness of long-term average features for speaker recognition.

Results are shown to be strongly dependent on the voiced speech averaging

interval Lv. Monotonic increases in the probability of correct

identification and monotonic decreases in the equal error probability for

speaker verification were obtained as L increased, even with substantialv

time periods between successive sessions. For Lv  corresponding to

approximately thirty-nine seconds of speech, text-independent results (no

linguistic constraints embedded into the data base) of 98.05% for speaker

identification and 4.25% for equal error speaker verification were

obtained.
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I. Introduction

In recent years, there has been an increasing interest in computer-

based techniques for text-independent speaker recognition (1-6).

Recognition is used here to encompass both speaker identification and

verification (7). The term "text-independent" has been used in several

different contexts. For example, Atal (1) has used the term in the sens

of choosing independent randomized test frames from a single sentence to

use against the remaining frames as a reference set. Sambur (4) has used

the term in an experiment where the sentences in the test set were

different from those in the reference set, even though each speaker read

precisely the same list of sentences.

Although useful insight has been gained by these approaches, they were

linguistically constrained. In many practical situations, where text-

independent speaker recognition is desired, there typically will be no

control over the speech being tested. As Beek, Neuberg and Hodge (8) have

pointed out, text-independent speaker identification can overcome problems

which may arise if the speaker is uncooperative, and there is a great

lterest for speaker identification over communications channels, which

have no linguistic constraints. Furthermore, there may be days to weeks of

separation between reference and test sessions.

Several other studies (2,3,5,6) have analyzed data with varying

amounts of linguistic constraints. Li and Walker (2) used thirty seconds

of speech read from the rainbow passage (9) recorded once by twenty-two

male speakers and twice by an additional eight male speakers. They did not
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specify the number of days separating the recordings. They demonstrated

that distances among spectral correlation matrices could be used to compare

inter-speaker and intra-speaker differences. However, the same text was

used for all tests, which could be interpreted as a linguistic constraint.

Hunt, Yates and Bridle (6) used approximately six two- to three-minute

long FM radio weather forecasts from each of eleven male and two female

speakers. Each forecast was divided into twenty- or thirty-second

intervals and long-term fundamental frequency and cepstral coefficient

features were computed for twenty-millisecond sequential frames in each

interval. They did not specify the number of days between successive

forecasts by the same speaker. Using Fisher discriminant analysis (10),

they achieved 89% correct speaker identification with independent test and

reference sets. However, the speakers read text with some effort at

uniformity between sessions, which could also be interpreted as a

linguistic constraint.

In a preliminary study, Markel, Oshika and Gray (5) used one

fifteen- to eighteen-minute interview from each of four male speakers with

somewhat similar speech characteristics. The interviews were recorded with

an audio tape recorder in a normal room environment. Long-term fundamental

frequency, gain and reflection coefficient features were computed for every

1000 sequential voiced frames (twenty-millisecond windows per frame, fifty

frames per second) in each interview. Using the same Fisher discriminant

analysis (10) as Hunt et al. to transform the data, they achieved perfect

discrimination among the four speakers. These recorded interviews were

considered to be free of linguistic constraints. However, the data were
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insufficient to obtain statistically significant results, and with only one

session per speaker, there was no analysis of speaker characteristics over

time.

The purpose of this paper is to present results from experiments in

speaker recognition where there were no linguistic constraints on the

speech content (other than the ones implied when the speaker is

cooperative, and English is used). In comparison with the previous study

(5), results are presented for a larger number of speakers, for multiple

sessions from each speaker, and for a greater number of features.

Furthermore, the effects of time between recording sessions are studied.

For practical implementation, only parameters obtained from the analysis

portion of a linear prediction vocoder (fundamental frequency, gain and

reflection coefficients) were used. (Beek et al. (8) have stated that the

reflection coefficients are currently favored for all-digital narrowband

communications systems.) This study shows that if these parameters are

averaged over sufficiently long intervals of time, such as thirty seconds

or more, the features obtained are essentially free of linguistic

constraint, and speaker recognition performance is comparable with some

text-dependent speaker recognition experiments. The linguistic results

agree with Li and Walker (2), who used a smaller data base; long-term

speech features are relatively stable after thirty seconds. Furthermore,

this study shows that if the averaging interval is too .iort, speaker

recognition performance is unacceptable with linguistically unconstrained

extemporaneous speech. In addition, the importance of having a time-spaced

reference set of sufficient size is demonstrated.
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II. Data Base and Processing Methodology

A data base was collected by recording 170 fifteen-minute interviews

from eleven male and six female speakers. There were ten sessions per

speaker, with each session separated by a minimum of one week. Generally,

the successive sessions were obtained within two to three weeks. One

exceptional separation between successive sessions was fourteen weeks.

All sessions were recorded on a Tandberg 9000X two-track tape recorder

at a recording speed of 7.5 ips. One track was used to record the

interviewer and the other track was used to record the speaker. The

speaker was recorded with a B and K half-inch condenser microphone and

amplifier system in an IAC sound room equipped with a window. The

interviewer was recorded with a conventional dynamic microphone outside of

the sound room. Two-way communication was established using headphones.

Each session began with the speaker reciting his/her name, a password,

a word list and the first paragraph of the rainbow passage (9). The

interviewer posed a topic to the speaker, and the remaining time (generally

twelve to thirteen minutes) was devoted to an extemporaneous monolog by the

speaker. The interviewer responded briefly when appropriate, or when it

was necessary to ask a new question for continuity.

A wide range of topics were covered, from describing a job to

describing a frightening experience. Although one might argue that this

approach in some sense constrained the data, casual listening of the

recordings demonstrates that this is not the case. The topics generally

.......................................
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provided a springboard for the speaker's thoughts, and the speech was

usually conversatonal, fluent and quite varied. (With one subject, the

suggested topic was consistently replaced by a wide variety of topics.)

Several observations should be noted which may be of considerable

importance in practical situations. After the initial recording gain

calibration for each session, no further gain adjustments were made.

Subjects occasionally became bored or distracted, and either lowered their

voice intensity or turned their heads away from the microphone.

Conversely, subjects occasionally became intense on a topic and nearly

"swallowed" the microphone, resulting in substantial low frequency waveform

variablity due to breath bursts. Also, there was some stuttering, throat

clearing, laughter, giggling and poor articulation.

In addition to these conditions, about half of the subjects acquired

various degrees of colds during a two to three week period. All of these

cases were recorded in the normal fashion, and no hand editing or deletion

of any data was performed. The data used in this study consisted of only

the extemporaneous speech material from the speakers, excluding the rainbow

passage, word lists, etc. The total duration of the data base is 17

speakers x 10 sessions/speaker x approximately 13 minutes/session, or

approximately 36.8 hours of data.

Several large population and long duration data bases have been

reported in the literature (10,11). These were all text-dependent studies

with short names or phrases. However, even the total duration of the large

data base used by Das and Mohn is only one-tenth the total duration of the

data base used in this study. The magnitude of this data base was
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extremely valuable for choosing feature subsets and defining reference sets

which spanned varying periods of time.

Each audio tape was manually cued to the location where the

extemporaneous portion of the interview began. Then real-time linear

prediction analysis and disk storage of the analysis parameters was

initiated. The data were low pass filtered at 3250 Hz and sampled at a

6500 Hz rate for compatibility with future applications to telephone

systems and narrowband vocoder systems. The speech samples were

preemphasized with a factor of 0.9, successive 128-point frames were

multiplied by a Hamming window, and the autocorrelation method of linear

prediction was used at a rate of fifty frames per second. The analysis was

performed in real-time under Fortran control using a commercially available

array processing system in conjunction with a PDP 11/45 computer (4,12).

The analysis parameters for each speech frame were ten reflection

coefficients, pitch period (obtained from a modified cepstral pitch

tracker) and gain, and were stored in a quantized format of eight bits (one

byte) per parameter. The process was terminated when the end of the tape

was reached (defined as a thirty-second silence interval). The processing

of each interview resulted in an analysis file of approximately 1000 disk

blocks (512 bytes/block), and all interviews together required nearly half

the total space of a 200-Mbyte disk (340,670 formatted disk blocks). In

comparison, it would require ten 200-Mbyte disks to digit-. e all of the

interviews with 12 bits/sample and to store directly without preprocessing.

Next, the analysis files were used to obtain long-term feature

vectors, where each vector was the average of Lv successive voiced analysis
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frames. Unvoiced and silence frames were not included in this study, since

it was felt that fundamental frequency was an essential speaker-dependent

parameter. The vocoder analysis parameters consisted of fundamental

frequency (the reciprocal of the pitch period), gain and ten reflection

coefficients. For every interval Lv, long-term features based upon the

mean, standard deviation and dispersion (standard deviation divided by

mean) of the twelve parameters were computed, resulting in thirty-six-

dimensional feature vectors. This feature set was defined in a reasonably

general manner since analytic techniques for feature reduction may be used

to find the most reasonable feature subsets for speaker recognition.

A summary of the number of feature vectors produced for all 170

interviews is given in Table 1. In this table, the data are partitioned

into representative test and reference sets (13). Four choices of Lv were

studied, namely Lv = 30, 100, 300 and 1000. The total number of feature

vectors and the average real-time interval per feature vector as functions

of Lv are also given.

TABLE 1 GOES HERE

It is important to consider the relationship between a particular

value of Lv and the real-time interval of a long-term feature vector. Most

significantly, a fixed number of voiced frames, rather than all of the

voiced frames from a fixed elapsed-time interval, was chosen for analysis.
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With extemporaneous speech, there may be intervals of ten to twenty seconds

where very little or no voiced speech occurs (the speaker may pause, cough,

laugh, etc.), leading to a variable voiced frame rate. If long-term

features were a function of the voiced frame rate, then such features would

not be reflective of only a speaker's speech sounds, but also his/her

speech rate and style. While these additional characteristics might be a

source of speaker-dependent information, they were not considered in this

study, and consequently long-term features were made independent of the

voiced frame rate.

The real-time interval for a long-term feature (seconds/feature)

corresponds to a product of the following factors: 1) the number of voiced

frames per feature vector (Lv) , 2) the reciprocal of the voiced frame to

total frame ratio (or the reciprocal of the voicing duty factor), and

3) the reciprocal of the number of analysis frames per second (or the

reciprocal of the frame rate). In a previous study (5), the voicing

threshold was set such that very smooth fundamental frequency (F0 ) contours

were observed on a real-time display system, and as a result, Lv = 1000

corresponded to approximately seventy seconds of real speech. For this

study, the voicing threshold was determined by synthesizing the speech

using the F0 contour obtained, and then selecting the threshold that

produced the subjectively best synthesis. The ear appears more sensitive

to voiced speech segments which are synthesized as unvoiced, rather than

the reverse, i.e. buzziness is typically preferred over whispery or hoarse

speech. As a result, more voiced decisions were made, and L = 1000 in
v

this study corresponded to approximately thirty-nine seconds of speech.



The feature vectors for each interview for each of the above values of

Lv required approximately 301, 93, 33 and 13 disk blocks respectively, and

a total of 74,800 disk blocks were required to store the feature vectors

for the various Lv conditions for the 170 interviews. These data were then

further processed as described in the next section.

III. Experiments in Parameter Variability

A. Intra-Speaker Variability

In a previous study (5), the within speaker (intra-speaker) variablity

of the features for one male speaker was demonstrated to be a monotonically

decreasing function of Lv from Lv = 1 to Lv = 1000 for a single fifteen

minute session. Using the data base in this study, it was possible to

study the intra-speaker variability for a larger number of male and female

speakers, and in addition, it was possible to study the intra-speaker

variability for cumulative sessions. If individual sessions are described

by S(i), i-l,10, then cumulative sessions may be described by C(i), i=1,10,

where C(i) = S(1)+S(2)+...+S(i).

The standard deviations of the long-term averages of the fundamental

frequency and the first reflection coefficient, denoted as <F0 > and <kl>

respectively, as measured over the cumulative sessions C(i) for one male

and one female speaker, are shown in Figure 1.
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For both speakers and for each set of cumulative sessions, <F0>

decreases as Lv increases. This behavior demonstrates that over long

intervals, a speaker's average fundamental frequency is (probably) a good

estimator of a characteristic or "habitual" value, and for successive long

intervals, the deviation from the habitual value is small. For short

intervals, influences such as speech prosody may mask the habitual value,

and successive short intervals will deviate more widely from each other.

This concept of habitual fundamental frequency is paralleled by the concept

of habitual (perceived) pitch; the latter is used in speech therapy as a

measure of acoustic improvement during treatment of a functional or organic

voice disorder (14), and is an important factor in listener-based speaker

recognition. For both speakers and for each value of Lv, there is a trend

for <F0 > to increase as more sessions are included (although there are

exceptions, e.g. for the female speaker, <F0 > for C(l) is greater than

<F0 > for C(2)). The dependence of <F0 > on Lv can approximately be

described as proportional to Lv -1/
2, which agrees with the theoretical

relationship between the variance of a set of samples of a stationary

random process, e.g., the Lv samples of F0 , and the variance of the process

(5). In absolute terms, the standard deviation of the long-term

fundamental frequency averages, over a time span of more than three months,

varies from 17-23 Hz at Lv = 30 to 4-8 Hz at Lv = 1000 for the male

speaker, and from 28-33 Hz at Lv = 30 to 8-11 Hz at Lv = 1000 for the

female speaker.

The behavior of <kl> as Lv increases mirrors the behavior of <F0 > as

Lv increases. Since the value k, is a monotonic function of 4vspectral

slope of a first-order linear prediction inverse filter for speech (5,15),
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then a parallel explanation in terms of "habitual spectral slope" may be

given, i.e., the longer the interval, the better the estimate of the

habitual spectral slope. However, as more sessions are included, the

behavior of <kl> differs from the behavior of <F0 >. For a given Lv,

there is essentially no measurable increase in k, variability as the time

period increases from one fifteen minute session to a period of nearly

three months, with all ten sessions included. This trend is observed for

the other speakers and the other long-term reflection coefficient averages,

thus substantiating the presence of an "habitual spectral characteristic"

for each speaker. Since the reflection coefficients are used to describe

the vocal tract shape in an acoustic tube model (16), the result implies

that the physical characteristics of a subject's vocal tract show no

observable changes over at least several months.

Furui et al. (17-20) have examined speaker variability over intervals

from a few weeks to several years. Their studies dealt with the

variability of repeated word lists and short sentences. They found that

for increasing time intervals from about three weeks to three months,

spectral parameters such as reflection (PARCOR) or cepstral coefficients

showed increasing variation. In contrast, the standard deviation of the

reflection coefficients in this study show essentially no variation over

time. Perhaps the data of Furui et al. were too linguistically

constrained, and speakezs never approached their habi-ual spectral

characteristic.

In summary, inter-speaker variability based on averaged features

decreases monotonically as the averaging interval increases. vurthermore,
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for a large averaging interval, inter-speaker feature variability is

relatively consistent over a time period of three months. The next aspect

of this study is a comparison which includes the intra-speaker information,

e.g. a feature-by-feature analysis which uses the values of each feature

from all subjects. If some features have small inter-speaker variance

compared to the intra-speaker variance, then those features will not be

useful for speaker recognition, and the performance of a classifier

designed to recognize speakers from these features may be poor.

B. Variance Ratio Analysis

One method of measuring the usefulness of a feature for speaker

recognition is the F-ratio or variance ratio (also referred to as the

generalized Fisher discriminant) (7,10,19). The variance ratio of a

feature is the quotient of the inter-speaker variance and the intra-speaker

variance (11). In general, the larger the variance ratio for a particular

feature, the greater the probable contribution of the feature in

distinguishing the speakers (13), but this property is strongly dependent

on the data and the experimental procedure. However, the variance ratio

does not account for inter-feature correlations, and if two features with

high variance ratios are highly correlated, then the inclusion of both

parameters might be somewhat redundant (7).

1. Trends as a function of population
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The variance ratios for the case L = 1000V

and cumulative sessions 1-10 are shown in Figure 2 for the male and

female speakers separately, and in Figure 3 for two subsets of the male

speakers. Only the variance ratios of the mean and standard deviation

features are shown. The variance ratios of the dispersion features were

consistently low, and therefore believed to contribute very little toward

speaker recognition in this study.

There are noticable differences in the variance ratios between the

male and female populations. Based on relative magnitudes, the features

< (kg)>, < (k8 )> and <kl> would be the most significant for identifying the

male population, while < (k7 )>, < (k8 > and <k8 > would be the most

significant for identifying the female population. If the male population

is arbitrarily divided into two equal-sized subsets, there are pronounced

changes in the variance ratios. For the first set of male speakers, <k1 >,

<F0 > and <k2 > have the largest variance ratios, and for the second set of

male speakers, <k4 >, <ks> and <k 3 > have the largest variance ratios. These

results show the need to have a substantially larger speaker population in

order to characterize the parameters of major importance. However, it is

estimated that to obtain variance ratios which would exhibit consistent

trends for a set of speakers and for subsets of the speakers, a much larger

data base, possibly more than 100 speakers, would be required.

In the previous paper (5), for a smaller and more homogeneous data

base, <k 2 > and <k6 > were found to be the most significant parameters.

These large variance ratios would be physical evidence for the importance

of the first and third formants in voiced speech (5). This larger
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population base, however, shows no such relationships. The conclusion is

that for studies with linguistically unconstrained speech, parameter

ranking using variance ratios should be used cautiously. The parameters

with large variance ratios may change depending on how the data are

partitioned, and the features with small variance ratios may be important

for achieving good speaker recognition if the data partitioning is changed.

(Conversely, it will be shown that some parameters with small variance

ratios may actually degrade speaker recognition.)

2. Trends as a function of Lv and time-spacing

The variance ratios were determined for the case L = 100 andv

cumulative sessions 1-10 (Figure 4), and for the case L = 1000 and

cumulative sessions 1-2 (Figure 5). Comparing Figures 2 and 4, which only

differ by the averaging interval Lv, the variance ratios generally maintain

the same relative relationships, i.e. the features which have the

relatively larger variance ratios for Lv = 1000 also have the relatively

larger variance ratios for Lv = 100. However, the absolute values of the

variance ratios are smaller for Lv = 100 than for Lv = 1000. Comparing

Figures 2 and 5, which only differ by the number of sessions, the relative

relationships and the absolute values of the variance ratios are similar

for two cumulative sessions and for ten cumulative sessions. However, a

slight decrease in the absolute values of the variance ratios for ten

cumulative sessions is observed. If the inter-speaker variance is assumed
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relatively constant for two or ten cumulative sessions, then the slight

decrease in variance ratios for ten sessions over two sessions correlates

with the slight increase in standard deviations observed in Figure 1. This

result further establishes that a speaker's habitual features, when

measured over a relatively long interval (greater than thirty seconds), do

not show appreciable changes over time periods up to three months.

3. Further observations

It is also evident that the variance ratios for the mean features

generally have larger values than the corresponding variance ratios for the

standard deviation features. The variance ratios for the dispersion

features are in turn substantially lower in value than the corresponding

variance ratios for the standard deviation features. Features based upon

gain have consistently small variance ratios.

IV. Speaker Recognition

Speaker recognition was based on a weighted Euclidean distance metric

(5,7,11), where the mean vector and inverse covariance matrix for each of

the seventeen speakers were estimated from feature vectors in the specified
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reference set. All thirty-six dimensions were used initially. The

distances between each reference class and each test vector were computed,

and the test vector was assigned to the reference class which yielded the

smallest distance. For speaker identification, a tally was taken of the

number of correct choices. For speaker verification, the distances were

stored for further analysis with a variable distance threshold. The method

of cross-validation in both directions was used (11), where independent

subsets of the data were cyclically treated as test and reference groups,

and the speaker recognition scores for each cycle were averaged for the

final scores.

Atal (7) and Bricker et al. (10) discussed three possible choices for

a distance metric. Each metric was a positive semidefinite form which

could be described by d = (X-Yi) M (X-Yi)T, where X was a vector to be

classified, Yi was the mean vector for class i, and M was a weighting

matrix. The choices for M were a pooled covariance matrix W-1 from all

speakers, an individual covariance matrix Wi-  from each speaker, or a

discriminant matrix D composed of the eigenvectors of W-1 B, where B was

the between-class covariance matrix.

The use of the discriminant matrix D requires sufficient knowledge of

the inter-speaker variability, which may be difficult to attain unless an

extremely large number of speakers is used. Atal (7) and Bricker

et al. (10) preferred the pooled covariance matrix W over the individual

covariance matrix W- 1. Their rationale was that data limitations (less

samples than dimensions) frequently result in a singular (noninvertible)

covariance matrix, and that one pooled covariance matrix would adequately
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represent all speakers, even though speaker dependent data is contained in

individual covariance matrices and subsequently is not used.

From Table 1, the average number of feature vectors per speaker per

session for Lv = 30,100,300,1000 is 685 (116411/170), 205 (34862/170), 68

(11563/170) and 20 (3413/170) respectively. For L, = 30,100 or 300, with

thirty-six dimensions, the individual covariance matrices were never

singular for any number of pooled sessions. For Lv = 1000, with thirty-six

dimensions, the individual covariance matrices were singular if less than

three sessions are pooled. Furthermore, Kanal (14) has suggested that te:-

times the number of dimensions is an adequate sample size for good

covariance matrix estimates with normal probability distribution

assumptions. For five sessions and thirty-six dimensions in a reference

class, the factors which relzte sample size to dimensionality for

Lv = 30,100,300,1000 are 95 (685*5/36), 28 (205*5/36), 9 (68*5/36) and 3

(20*5/36) respectively. For Lv = 1000, sessions as long as forty-five

minutes would have been necessary to produce a factor near ten, but a

factor as large as ten is probably not needed for features which are

themselves the average of 1000 frames of data. However, fifteen minutes

was a sufficient duration for the other values of Lv, as well as an upper

limit of endurance for the subject and interviewer. It was felt that the

advantages gained through the use of individual covariance matrices

outweighed potential problems of undersampling the speaker's statistics.

In a practical situation, relatively long sessions would be necessary for

sufficient accumulation of speaker's reference data, but thereafter the

speaker could be verified approximately every thirty-nine secon.
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A. Trends as a function of Lv

For the first series of tests, the first five sessions were treated as

the reference data, the second five sessions were treated as the test data,

and then vice-versa. Results are shown in Table 2. In Table 2a, it is

seen that the average scores for the probability of correct identification

P(CI) monotonically increase from 60% to nearly 92% as L increases from 30v

to 1000 respectively. A confusion matrix of identification errors shows

that no one speaker is more difficult to identify than any other speaker.

In Table 2b, as Lv  increases, the speaker verification equal error

probability (probability of false acceptance P(FA) equals the probability

of ialse rejection P(FR)) monotonically decreases from 43.1% to 8.8%. This

trend is principally due to the P(FA) behavior, since the P(FR) behavior

does not change appreciably with Lv (5). Although the distance threshold

for a given probability of correct acceptance and fixed dimensionality

(under multivariate normal assumptions) may be analytically obtained, the

distance threshold for the equal error probability can only be determined

experimentally. In Table 2c, the equal error probability distance

threshold is seen to monotonically increase as L increases.

TABLE 2 GOES HERE
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It is interesting to illustrate the difference between text-

independent speaker recognition with and without linguistic constraints.

Sambur has proposed an orthogonal linear prediction set of parameters for

text-independent speaker recognition (4). Within the context of a

linguistically constrained experiment where all speakers spoke the same set

of sentences, Sambur's text-independent results (in the sense that the

reference sentences were different from the test sentences) were near 94%.

The orthogonal linear prediction parameters are essentially equivalent to a

linear transformation of the long-term reflection coefficients averages

used in this study if Lv = 1 (equivalent to no averaging). If all

linguistic constraints are removed, and if little or no averaging is used,

the results of Table 2 indicate that the speaker identification scores for

a true text-independent situation with a reasonable number of speakers will

be quite poor (even for L = 30, P(CI) is bounded from above at 62%). AV

similar statement follows for the case of speaker verification.

B. Trends as a function of time spacing

Rosenberg (21) has noted that one of the most important considerations

in designing a data base is the time period over which -tterances are

collected and the methods for establishing reference patterns over time.

Following the pictorial scheme of Furui et al. (14-17) for illustrating

reference and test sets over time, speaker recognition for fou-aases shown

in Figure 6 were investigated. Reference sets were composed of from two to
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five successive sessions (with a time interval of at least one week between

sessions). No comingling such as odd-numbered reference sessions and even-

numbered test sessions was allowed. For each case, the reference and test

sets were composed of equal numbers of successive independent T-ssions, and

two-direction recognition tests (as described above) were made for the four

Lv cases.

The results are presented in Table 3. It is seen that for all Lv

conditions, higher scores were obtained as the number of cumulative

sessions increased.

TABLE 3 GOES HERE

The differences in the speaker identification score between the first

two sessions and the first five sessions is around 15% for all L casesv

shown (Lv = 1000 was not used for two sessions since the covariance

matrices were singular). It is interesting to note that in a text-

dependent speaker verification experiment with different parameters and

approaches, Luck (22) found that speech samples collected over a five week

period gave the best results.

C. Trends as a function of feature subsets
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In a previous section, it was noted that the dispersion features had very

small variance ratios, whereas the mean features as a group consistently

had the largest variance ratios. How would recognition scores compare if

the dispersion features were omitted, or if only the mean features were

included? The recognition test for Lv = 1000 and five sessions per

reference and test set was repeated using several different feature

subsets, based on an analysis of the magnitudes of the variance ratios. In

one case, only the twelve mean features were used, and in a second case,

only the twenty-four mean and standard deviation features were used. The

average scores for the two cases were P(CI) = 93.6% with

P(FA) = P(FR) = 14.5%, and P(CI) = 96.8% with P(FA) = P(FR) = 7.2%

respectively. For comparison, the comparable average scores for all

thirty-six features (Table 2) were P(CI) = 91.6% with P(FA) = P(FR) = 8.8%.

Not only did both of these new cases based on feature subsets yield

better scores than the original thirty-six dimension feature set, but in

the second case, the identification score was markedly increased by more

than 5%. This result is a significant practical illustration that the

inclusion of some parameters which would hopefully improve performance (or

at worst case would have no effect on performance) , can sometimes actually

degrade the system performance in an open test. In a closed test with the

distance metric used in this study, where a reference set also is used as a

test set, this theoretically cannot happen. Closed tests on-this data base

verified that monotonic increases in the number of features produced

monotonic increases in the P(CI) and monotonic decreases in equal error

probability P(FA) - P(FR).
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This improved performance by eliminating features with relatively

small variance ratios was the basis for one additional test with a feature

subset. In considering the remaining twenty-four features, the gain-

related features had very small variance ratios, and furthermore, the

inclusion of gain-related features was difficult to physically justify. In

fact, it could be argued that even if these features helped, they should

not be included because they may simply reflect a speaker's position,

interest, etc. during the recording session. Therefore, the recognition:

test with only twenty-four features was repeated with the gain-relatzd

features removed, and the performance of this last test with only twenty-

two parameters was better than any previous test. The final results of

this study using only the twenty-two fundamental frequency and reflection

coefficients long-term averages are shown in Table 4.

TABLE 4 GOES HERE

These results are extremely promising for future studies in many areas of

speaker recognition. This substantially large testing effort (over eighty

million distance measurements) has shown that realistic and acceptable

speaker identification and speaker verification can be achieved with

text-independent linguistically unconstrained speech.

The cumulative probability functions (Figure 7A) and the probability

density functions (Figure 78) for false rejection and false acceptance may

be used to compare the inter- and intra-speaker distances in the
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verification task. These curves are derived from the first half of the
final speaker verification test with 22 features, Lv = 1000, reference

sessions 1-5 and test sessions 6-10. The equal error point is graphically

depicted as the crossover point of the two cumulative probability curves in

Figure 7A. This equal error point is found at a distance threshold where

the probability of false acceptance (i.e. acceptance of an imposter) is

equal to the probability of false rejection (i.e. rejection of a correct

speaker).

The probability density functions (pdfs) in Figure 7B show the

distribution of the intra- and inter-speaker distances. The crossover

point in Figure 7A divides each of the pdfs into two sections, with the

area under the intra-speaker pdf to the right of the dividing line equal to

the area under the inter-speaker pdf to the left of the dividing line. For

this data, the equal error crossover point is close to the intersection of

the two pdfs, but only identical and symmetric pdfs will always have

identical crossover and intersection points.

For test sessions 6-10 with Lv = 1000, there were a total of 1708 test

vectors from the 17 speakers. The distances between each of these test

vectors and the correct reference speaker comprise the intra-speaker

distance space. A histogram of these intra-speaker distances is shown in

Figure 8A. The mean and standard deviation of the histogram distances were

used to approximate normal and log-normal distributions. For the open

test, there is no underlying theoretical distribution, and a chi-square

test was used to measure the goodness of fit of the normal and log-normal

distributions. The log-normal distribution had the smallest chi-square
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measure. Analogously, the distances between each of the 1708 test vectors

and each of the 16 incorrect speakers (i.e. eliminating the reference

speaker who is a correct match to the test vector) comprise the inter-

speaker distance space. A histogram of the 27,318 inter-speaker distances

is shown in Figure 8B. A log-normal distribution is a better fit to the

inter-speaker histogram than a normal distribution, but not as good a fit

as with the intra-speaker histogram.

V. Summary

The significance and value of long-term feature averaging for text-

independent speaker recognition with linguistically unconstrained speech

has been demonstrated. This study used practical analysis conditions of

telephone-range spectral width (0-3250 Hz) and parameters obtained from a

linear prediction vocoder. ll parameter-related computations were

performed in real time using 16-bit integer arithmetic, and all parameters

were further quantized into an 8-bit format for efficient disk storage.

The recording environment was controlled by recording the speakers

with a condenser microphone in an IAC sound room. An important extension

of this work would be to reprocess the "clean-text" audio tapes through

various channel disturbances such as the telephone system to determine the

robustness of the approach in less ideal environmental conditions (20).

Also, in some situations, reference data may be obtained in a clean
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environment and subsequent speaker recognition attempted in a noisy

environment. This area also requires investigation.

Although seventeen speakers is not a trivial population size, it

appears that for determining the importance of individual features for

speaker recognition using linguistically unconstrained text, a

substantially larger population base is required. It was found that

features obtained from only one or two sessions of a given population are

relatively unchanged over a much larger number of time-spaced sessions,

where there was at least one week between sessions. Other features should

also be investigated. It has been suggested that mean deviations (21) may

prove more useful than the standard deviations used in this study. Further

research is also required to assess the conditions, e.g., the number of

long-term samples from a speaker, for obtaining a good estimate of the mean

and variance of a speaker's characteristics.

An assumption throughout has been that only voiced speech frames are

to be used in the analysis. If this assumption was not necessary, or if

only slight degradation occurred if both voiced and unvoiced speech frames

were included, the process would be simplified computationally, and in

addition, 1000 frames per average would correspond to a real time interval

only about half as long as required here.

The best speaker recognition was obtained when 1) five sessions

successively separated by at least one week were used to define the

reference set, 2) the mean and standard deviation of the long-term averages

of the fundamental frequency and reflection coefficients were used, and

3) each feature was obtained by averaging 1000 voiced analysis frames
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(corresponding to average real-time intervals of about thirty-nine

seconds). With approximately eighteen hours of reference data and eighteen

hours of independent test data from seventeen speakers, spaced over nearly

three months in time, an average speaker identification score of 98.05% and

an average equal error speaker verification rate of 4.25% were measured.
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FIGURES

Fig. 1 Standard deviation of long-term features as a

function of Lv , the number of voiced frames per
feature vector.

Fig. 2 Variance ratios from all 10 sessions as a function
of long-term mean and standard deviations of
parameters.
A) all male speakers
B) all female speakers. L =1000

v

Fig. 3 Same conditions as Fig. 2 except
A) male speakers:first five
B) male speakers:second five

Fig. 4 Same conditions as Fig. 2 except that L =100:
A) all male speakers v
B) all female speakers

Fig. 5 Same conditions as Fig. 2 except only sessions 1-2
shown:
A) all male speakers
B) all female speakers

Fig. 6 Relations between reference samples and test samples
for experimental results of Table 3.

Fig. 7 Intra and inter- Speaker Comparisons

A) Cumulative Probability
B) Probability Density Estimates

Fig. 8 Distance Histograms and Models
A) Intra-speaker Distances
B) Inter-speaker Distances

TABLES

Table 1 Number of feature vectors and average real-time
interval (RTI) for each Lv condition.

Table 2 Speaker recognition based on partitioning dta in half
and with 36 long-term features.

Table 3 Percent of speakers correctly identified as a function
of the number of reference sessions.

Table 4 Performance with fundamental frequency and ref ,VEtion
coefficient mean and standard deviation long-term
features, Lv=1000 (average real-time interval = 39
seconds).
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Fig., Variance ratios from all 10 sessions as a function of

long-term mean and standard deviations of parameters.
A) all male speakers
B) all female speakers. Lv=IO000
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SPEAKER IDENTIFICATION
Percent of correct choices based on minimum distance

SESSION Lv_

REF TEST 30 100 300 1000
1-5 6-10 61.20 78.65 88.20 93.34

6-10 1-5 59.87 75.48 85.27 89.77
AVERAGE 60.54 77.06 86.74 91.56

SPEAKER VERIFICATION
Percent of false acceptances and false rejections based

on equal error criterion

SESSION Lv

REF TEST 30 100 300 1000

1-5 6-10 43.4 27.8 10.7 9.4
6-10 1-5 42.8 26.9 10.5 8.2

AVERAGE 43.1 27.4 10.6 8.8

SPEAKER VERIFICATION
Threshold distance based on equal error criterion

SESSION Lv

REF TEST 30 100 300 1000
1-5 6-10 5.79 7.52 9.78 18.84

6-10 I-5 5.85 7.58 10.85 21.10
AVERAGE 5.82 7.55 10.32 19.97

Table 2. Speaker recognition based on partitioning data in half and with

36 long-term features



SESSIONS Lv
NO. REF TEST 30 1O0 300 100

2 1-2 3-4 50.36 64.34 71.18
2 3-4 1-2 53.45 67.95 75.31 -

3 1-3 4-6 54.29 70.03 79.12 80.58
3 4-6 1-3 57.04 72.69 82.14 89.30

4 1-4 5-8 59.'91I 76.41 86.73' 92.85
4 5-8 1-4 59.26 74.62 83.45 86.34

5 1-5 6-t0 61.20 78.65 88.201 93-34
5 6-10 1-5 59.87 75.48 85.27 89.77

Table 3. Percent of speakers correctly identified as a function of the

number of reference sessions
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